Abstract

The Haber-Bosch (H-B) process, which is widely used in industry to synthesize ammonia, leads to serious energy and environment-related issues. The electrochemical nitrogen reduction reaction (eNRR) is the most promising candidate to replace H-B processes because it is more energy-efficient and environmentally friendly. Atomic-level catalysts, such as single-atom and double-atom catalysts (SACs and DACs), are of great interest due to their high atomic utilization and activity. The synergy between the metal atoms and two-dimensional (2D) support not only modulates the local electronic structure of the catalyst but also controls the catalytic performance. In this article, we explored the eNRR performance of 2D Fe3@Nx C20-x (x = 0~4), whose structure was based on the experimentally synthesized Ag3@C20 sheet, by means of density functional theory calculations. Through calculations, we found that the 2D Fe3@N4C16 with Fe2 site coordinated with four N is a promising eNRR catalyst: the limiting potential is as low as -0.45 V, and the competing hydrogen evolution reaction can be effectively suppressed. Our work not only confirms that the coordination environment of the metal site is crucial for the electrocatalytic activity but also provides a new guideline for designing low-cost eNRR catalysts with high efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call