Abstract
The growth of zinc dendrites limits the practical application of zinc ion batteries, which can be effectively suppressed by surface doping. Herein, the density functional theory combined with symbolic regression algorithm had been used to study the growth of zinc nuclei on 22 single atom-doped surfaces. The results indicate that the doping surfaces with convex structure can suppress the zinc dendrite growth because of the weak adsorption energy and low diffusion activation energy of zinc atoms. Moreover, the diffusion activation energy and the orientation of zinc nucleation depend on the adsorption energy of the first zinc atom. The larger the adsorption energy, the greater the diffusion barrier of zinc atoms and the greater the tendency for vertical growth of zinc nuclei. Therefore, the symbolic regression algorithm was utilized to identify the relationship between the adsorption energy of the first zinc atom and the properties of the doped atom. It was found that the radius and d-band center of doped atoms are key factors affecting the adsorption energy of the first zinc atom, and the doped atom with large atom radius and low d-band center can inhibit the zinc dendrite growth. Finally, the Al, Ag, Cd, In, Sn, Au, Hg, Tl, and Bi atoms are screened out to be the promising doping single atoms that can suppress the zinc dendrite growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.