Abstract

Three novel polyimides (PI(TPF-Br BPDA), PI(TPF-Ph BPDA), and PI(TPF-Ph-OMe BPDA)) with tetraphenyl fluorene (TPF) were synthesized and tested. The laboratorial results showed that the constructed electronic devices exhibited different memory behaviors due to the different steric hindrance substituents (bromine atom, phenyl, and 3,5-dimethoxyphenyl) in 2,7-position of TPF molecule. The memorizers based on PI(TPF-Br BPDA) and PI(TPF-Ph BPDA) presented volatile dynamic random access memory (DRAM) feature with turn-on voltages of −2.39 and +1.45 V, as same as −1.71 and +1.74 V, separately. However, the PI(TPF-Ph-OMe BPDA) based apparatus exhibited non-volatile write-once read-many-times memory (WORM) behavior with turn-on voltage of −1.13 V, due to the more charge traps of 3,5-dimethoxyphenyl moieties and higher dipole moment. The switching mechanism was verified by quantum simulation of energy level, electrostatic potential (ESP) surface and dipole moment. These results indicated that the electrical memory performance of the synthesized TPF-based PIs could be adjusted by modifying the electron donor structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.