Abstract
As the electronic industry develops rapidly, the miniaturisation, integration and multifunctionality of electronic devices have resulted in a dramatic increase in power density, and the heat dispersal of electronic devices has attracted much attention. In this work, hydroxylated hexagonal boron nitride (BN-H) was obtained by hot alkali treatment, and boron nitride nanosheets (BNNS) with a thickness of about 4 nm were obtained by boric acid-assisted ball milling stripping. The effects of different types of fillers as well as filler contents on the thermally conductive and mechanical performance of organosilicon composites were also compared. Notably, when BN-H and BNNS thermally conductive fillers were added at 12 wt%, the thermally conductive coefficients of the composites were 0.4831 W·m−1·K−1 and 0.7131 W·m−1 K−1, respectively, which were 183% and 318% of higher than that for the pure silicone rubber (SR, with a thermally conductive coefficient of 0.1706 W·m−1·K−1). In addition, in respect of mechanical performance, the tensile strengths of SR/BN-H and SR/BNNS composites with a filling level of 12 wt% were 3.59 MPa and 3.89 MPa, respectively, and the storage moduli were 4501 MPa and 4583 MPa, respectively, which were improved to a certain extent compared with pure SR. The present work provides an effective way to develop organosilicone rubber composites with good thermal conductivity and mechanical properties by boric acid assisted ball milling to strip boron nitride in the field of electronics packages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.