Abstract

The study employed Density Functional Theory (DFT) to investigate the catalytic debromination mechanism of brominated epoxy resins (BERs) by iron (Fe) and copper (Cu) catalysts. By introducing electric field (EF), intramolecular electron transfer and polarization effects on BERs debromination were explored and experimentally validated. Results indicated that the bond dissociation energy (BDE) of the C-Br bond was 312.27 kJ/mol without catalysis, while with Fe, Cu, and EF, it was 114.47 kJ/mol, 94.85 kJ/mol, and 292.59 kJ/mol, respectively, enhancing reactivity. EF parallel to the C-Br bond and oriented toward the C atom, altered electrostatic potential and dipole moment around C-Br bond, leading to 68.60% and 50.19% increment in electronic contribution difference and molecule polarity, respectively, thereby reducing the C-Br BDE. Fe and Cu facilitated electron transfers with BERs, inducing reactions between their negative electrostatic potentials and Br's positive potential, changing electron sharing, resulting in 19.87% and 12.11% increase in polarity, respectively, and further BDE reduction. Structural modifications by the EF and catalysts also intensified van der Waals forces with bromine atoms and decreased spatial hindrance, collectively making C-Br bond breakage easier. Experiments revealed the EF enhanced BERs' debromination efficiency but hindered Fe/Cu's catalysis at lower temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.