Abstract
NMR and molecular dynamics simulations revealed distinct conformational dynamics and allosteric networks in computationally re-designed IL-2 superkines compared to wild-type IL-2, despite their similar crystal structures.The superkines S1 and S15 exhibit altered sampling of excited state conformations at an intermediate timescale, with slower conformational exchange rates compared to wild-type IL-2.A rationally designed mutation (L56A) in the S1 superkine's core allosteric network partially reverted its dynamics, receptor binding affinity, and T cell signaling behavior towards that of wild-type IL-2.Our study demonstrates that IL-2 core dynamics play a critical role in receptor binding and signaling function, providing a foundation for engineering more selective IL-2-based immunotherapies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.