Abstract
In this paper vector fields around the origin in dimension three which are approximations of discontinuous ones are studied. In a former work of Sotomayor and Teixeira [6] it is shown, via regularization, that Filippov's conditions are the natural ones to extend the orbit solutions through the discontinuity set for vector fields in dimension two. In this paper we show that this is also the case for discontinuous vector fields in dimension three. Moreover, we analyse the qualitative dynamics of the local flow in a neighborhood of the codimension zero regular and singular points of the discontinuity surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.