Abstract

When the first average function is non-zero we provide an upper bound for the maximum number of limit cycles bifurcating from the periodic solutions of the center x˙=−y((x2+y2)/2)m and y˙=x((x2+y2)/2)m with m≥1, when we perturb it inside a class of discontinuous piecewise polynomial vector fields of degree n with k pieces. The positive integers m, n and k are arbitrary. The main tool used for proving our results is the averaging theory for discontinuous piecewise vector fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.