Abstract
<p style='text-indent:20px;'>The main goal of this paper is to study the asymptotic behavior of a coupled Klein-Gordon-Schrödinger system in three dimensional unbounded domain. We prove the existence of a global attractor of the systems of the nonlinear Klein-Gordon-Schrödinger (KGS) equations in <inline-formula><tex-math id="M2">\begin{document}$ H^1({\mathbb R}^3)\times H^1({\mathbb R}^3)\times L^2({\mathbb R}^3) $\end{document}</tex-math></inline-formula> and more particularly that this attractor is in fact a compact set of <inline-formula><tex-math id="M3">\begin{document}$ H^2({\mathbb R}^3)\times H^2({\mathbb R}^3)\times H^1({\mathbb R}^3) $\end{document}</tex-math></inline-formula>.</p>
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have