Abstract
The spatially homogeneous Boltzmann equation without angular cutoff is discussed on the regularity of solutions for the modified hard potential and Debye-Yukawa potential. When the angular singularity of the cross section is moderate, any weak solution having the finite mass, energy and entropy lies in the Sobolev space of infinite order for any positive time, while for the general potentials, it lies in the Schwartz space if it has moments of arbitrary order. The main ingredients of the proof are the suitable choice of the mollifiers composed of pseudo-differential operators and the sharp estimates of the commutators of the Boltzmann collision operator and pseudo-differential operators. The method developed here also provides some new estimates on the collision operator.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.