Abstract
In this paper we prove new constructive coercivity estimates for the Boltzmann collision operator without cutoff, that is for long-range interactions. In particular we give a generalized sufficient condition for the existence of a spectral gap which involves both the growth behavior of the collision kernel at large relative velocities and its singular behavior at grazing and frontal collisions. It provides in particular existence of a spectral gap and estimates on it for interactions deriving from the hard potentials ϕ ( r ) = r − ( s − 1 ) , s ⩾ 5 , or the so-called moderately soft potentials ϕ ( r ) = r − ( s − 1 ) , 3 < s < 5 (without angular cutoff). In particular this paper recovers (by constructive means), improves and extends previous results of Pao [Y.P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. I, Comm. Pure Appl. Math. 27 (1974) 407–428; Y.P. Pao, Boltzmann collision operator with inverse-power intermolecular potentials. II, Comm. Pure Appl. Math. 27 (1974) 559–581]. We also obtain constructive coercivity estimates for the Landau collision operator for the optimal coercivity norm pointed out in [Y. Guo, The Landau equation in a periodic box, Comm. Math. Phys. 231 (2002) 391–434] and we formulate a conjecture about a unified necessary and sufficient condition for the existence of a spectral gap for Boltzmann and Landau linearized collision operators.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.