Abstract

This paper is the second of a series devoted to the study of the dynamics of the spectrum of large random matrices. We precise and extend some results of the first part. We study general extensions of the partial differential equation arising to characterize the limit spectral measure of the Dyson Brownian motion. We provide a regularizing result for those generalizations. We also show that several results of part I extend to cases in which there is no spectral dominance property. We then provide several modeling extensions of such models as well as several identities for the Dyson Brownian motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.