Abstract
We consider the n-dimensional space homogeneous Boltzmann equation for elastic collisions for variable hard potentials with Grad (angular) cutoff. We prove sharp moment inequalities, the propagation of L 1 -Maxwellian weighted estimates, and consequently, the propagation L ∞ -Maxwellian weighted estimates to all derivatives of the initial value problem associated to the afore mentioned equation. More specifically, we extend to all derivatives of the initial value problem associated to this class of Boltzmann equations corresponding sharp moment (Povzner) inequalities and time propagation of L 1 -Maxwellian weighted estimates as originally developed Bobylev [A.V. Bobylev, Moment inequalities for the Boltzmann equation and applications to spatially homogeneous problems, J. Statist. Phys. 88 (1997) 1183–1214] in the case of hard spheres in 3 dimensions. To achieve this goal we implement the program presented in Bobylev–Gamba–Panferov [A.V. Bobylev, I.M. Gamba, V. Panferov, Moment inequalities and high-energy tails for Boltzmann equation with inelastic interactions, J. Statist. Phys. 116 (5–6) (2004) 1651–1682], which includes a full analysis of the moments by means of sharp moment inequalities and the control of L 1 -exponential bounds, in the case of stationary states for different inelastic Boltzmann related problems with ‘heating’ sources where high energy tail decay rates depend on the inelasticity coefficient and the type of ‘heating’ source. More recently, this work was extended to variable hard potentials with angular cutoff by Gamba–Panferov–Villani [I.M. Gamba, V. Panferov, C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, ARMA (2008), in press] in the elastic case collision case where the L 1 -Maxwellian weighted norm was shown to propagate if initial states have such property. In addition, we also extend to all derivatives the propagation of L ∞ -Maxwellian weighted estimates, proven in [I.M. Gamba, V. Panferov, C. Villani, Upper Maxwellian bounds for the spatially homogeneous Boltzmann equation, ARMA (2008), in press], to solutions of the initial value problem to the Boltzmann equations for elastic collisions for variable hard potentials with Grad (angular) cutoff.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.