Abstract

The score tests of independence in multivariate extreme values derived by Tawn (Tawn, J.A., “Bivariate extreme value theory: models and estimation,” Biometrika 75, 397–415, 1988) and Ledford and Tawn (Ledford, A.W. and Tawn, J.A., “Statistics for near independence in multivariate extreme values,” Biometrika 83, 169–187, 1996) have non-regular properties that arise due to violations of the usual regularity conditions of maximum likelihood. Two distinct types of regularity violation are encountered in each of their likelihood frameworks: independence within the underlying model corresponding to a boundary point of the parameter space and the score function having an infinite second moment. For applications, the second form of regularity violation has the more important consequences, as it results in score statistics with non-standard normalisation and poor rates of convergence. The corresponding tests are difficult to use in practical situations because their asymptotic properties are unrepresentative of their behaviour for the sample sizes typical of applications, and extensive simulations may be needed in order to evaluate adequately their null distribution. Overcoming this difficulty is the primary focus of this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.