Abstract

In this paper we introduce three natural “score statistics” for testing the hypothesis that F (t0) takes on a fixed value in the context of nonparametric inference with current status data. These three new test statistics have natural intepretations in terms of certain (weighted) L2 distances, and are also connected to natural “one-sided” scores. We compare these new test statistics with an analogue of the classical Wald statistic and the likelihood ratio statistic introduced in Banerjee and Wellner (2001) for the same testing problem. Under classical “regular” statistical problems the likelihood ratio, score, and Wald statistics all have the same chi-squared limiting distribution under the null hypothesis. In sharp contrast, in this non-regular problem all three statistics have different limiting distributions under the null hypothesis. Thus we begin by establishing the limit distribution theory of the statistics under the null hypothesis, and discuss calculation of the relevant critical points for the test statistics. Once the null distribution theory is known, the immediate question becomes that of power. We establish the limiting behavior of the three types of statistics under local alternatives. We have also compared the power of these five different statistics via a limited Monte-Carlo study. Our conclusions are: (a) the Wald statistic is less powerful than the the likelihood ratio and score statistics; and (b) one of the score statistics may have more power than the likelihood ratio statistic for some alternatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.