Abstract

AbstractThe modelling of multivariate extreme events is important in a wide variety of applications, including flood risk analysis, metocean engineering and financial modelling. A wide variety of statistical techniques have been proposed in the literature; however, many such methods are limited in the forms of dependence they can capture, or make strong parametric assumptions about data structures. In this article, we introduce a novel inference framework for bivariate extremes based on a semi-parametric angular-radial model. This model overcomes the limitations of many existing approaches and provides a unified paradigm for assessing joint tail behaviour. Alongside inferential tools, we also introduce techniques for assessing uncertainty and goodness of fit. Our proposed technique is tested on simulated data sets alongside observed metocean time series’, with results indicating generally good performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.