Abstract

We assembled photoresponsive mono- and bilayer systems with well-defined properties from rod-shaped molecules equipped with different photoswitches. Using properly chosen chromophores (diarylethene-based switch and unidirectional light-driven molecular motor), we then selectively targeted layers made of the same types of photoswitches using appropriate monochromatic light. UV-vis analysis confirmed smooth and unrestricted photoisomerization. To achieve this, we synthesized a new class of triptycene-based molecular pedestals adept at forming sturdy Langmuir-Blodgett films on a water-air interface. The films were smoothly transferred to gold and quartz surfaces. Repeated deposition afforded bilayer systems: one layer containing diarylethene-based photoswitches and the other a unidirectional light-driven molecular motor. Structural analysis of both mono- and bilayer systems revealed the molecules to be tilted with carboxylic functions pointing to the surface. At least two different polymorphs differing in monolayer thickness and tilt angle (~40° and ~60°) were identified on the gold surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.