Abstract
Flagella nanotubes present on the surface of E. coli bacteria were bioengineered to display arginine-lysine and glutamic acid-aspartic acid peptide loops. These protein bionanotubes were demonstrated to self-assemble, layer-by-layer, by atomic force microscopy (AFM) on gold-coated mica and quartz surfaces. Flagella with arginine-lysine loops were assembled in a bottom-up manner on a gold-coated mica surface by employing the molecular complementarity of the biotin-streptavidin interaction. Self-assembled monolayers of alkylamines on the gold surface were derivatized with biotin, followed by binding of streptavidin to the biotinylated surface. The amine groups of the flagella peptide loops were chemically attached to biotin through a polyethyleneoxide spacer and paired with streptavidin on the gold surface. This process could be repeated to generate multiple layers of flagella. Flagella with glutamic acid-aspartic acid peptide loops were self-assembled on quartz surfaces by electrostatic attraction to protonated amine groups. The quartz surface was silanized to obtain amine groups, which were used to assemble the first layer of glutamic acid-aspartic acid peptide loop flagella nanotubes. This layer was covered with polyethyleneimine through electrostatic attraction and employed to assemble a second layer of flagella. The self-assembled glutamic acid-aspartic acid flagella were also used to demonstrate the biomineralization of CaCO 3. The layer-by-layer self-assembly employing electrostatic attraction yielded a more uniform layer of flagella than the one obtained with the molecular complementarity of the biotin-streptavidin pair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.