Abstract
We study reflection principles in Kelley-Morse set theory with urelements (KMU). We first show that First-Order Reflection Principle is not provable in KMU with Global Choice. We then show that KMU + Limitation of Size + Second-Order Reflection Principle is mutually interpretable with KM + Second-Order Reflection Principle. Furthermore, these two theories are also shown to be bi-interpretable with parameters. Finally, assuming the existence of a κ+-supercompact cardinal κ in KMU, we construct a model of KMU + Second-Order Reflection Principle where Limitation of Size fails.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.