Abstract

In [1] and [2] there is a development of a class theory, whose axioms were formulated by Bernays and based on a reflection principle. See [3]. These axioms are formulated in first order logic with ∈:(A1)Extensionality.(A2)Class specification. Ifϕis a formula andAis not free inϕ, thenNote that “xis a set“ can be written as “∃u(x∈u)”.(A3)Subsets.Note also that “B⊆A” can be written as “∀x(x∈B→x∈A)”.(A4)Reflection principle. Ifϕ(x)is a formula, thenwhere “uis a transitive set” is the formula “∃v(u∈v) ∧ ∀x∀y(x∈y∧y∈u→x∈u)” andϕPuis the formulaϕrelativized to subsets ofu.(A5)Foundation.(A6)Choice for sets.We denote byB1the theory with axioms (A1) to (A6).The existence of weakly compact and-indescribable cardinals for everynis established inB1by the method of defining all metamathematical concepts forB1in a weaker theory of classes where the natural numbers can be defined and using the reflection principle to reflect the satisfaction relation; see [1]. There is a proof of the consistency ofB1assuming the existence of a measurable cardinal; see [4] and [5]. In [6] several set and class theories with reflection principles are developed. In them, the existence of inaccessible cardinals and some kinds of indescribable cardinals can be proved; and also there is a generalization of indescribability for higher-order languages using only class parameters.The purpose of this work is to develop higher order reflection principles, including higher order parameters, in order to obtain other large cardinals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.