Abstract
Arnoldi's method has been popular for computing the small number of selected eigenvalues and the associated eigenvectors of large unsymmetric matrices. However, the approximate eigenvectors or Ritz vectors obtained by Arnoldi's method cannot be guaranteed to converge in theory even if the approximate eigenvalues or Ritz values do. In order to circumvent this potential danger, a new strategy is proposed that computes refined approximate eigenvectors by small sized singular value decompositions. It is shown that refined approximate eigenvectors converge to eigenvectors if Ritz values do. Moreover, the resulting refined algorithms converge more rapidly. We report some numerical experiments and compare the refined algorithms with their counterparts, the iterative Arnoldi and Arnoldi-Chebyshev algorithms. The results show that the refined algorithms are considerably more efficient than their counterparts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.