Abstract

Generalized block Lanczos methods for large unsymmetric eigenproblems are presented, which contain the block Arnoldi method, and the block Arnoldi algorithms are developed. The convergence of this class of methods is analyzed when the matrix A is diagonalizable. Upper bounds for the distances between normalized eigenvectors and a block Krylov subspace are derived, and a priori theoretical error bounds for Ritz elements are established. Compared with generalized Lanczos methods, which contain Arnoldi's method, the convergence analysis shows that the block versions have two advantages: First, they may be efficient for computing clustered eigenvalues; second, they are able to solve multiple eigenproblems. However, a deep analysis exposes that the approximate eigenvectors or Ritz vectors obtained by general orthogonal projection methods including generalized block methods may fail to converge theoretically for a general unsymmetric matrix A even if corresponding approximate eigenvalues or Ritz values do, since the convergence of Ritz vectors needs more sufficient conditions, which may be impossible to satisfy theoretically, than that of Ritz values does. The issues of how to restart and to solve multiple eigenproblems are addressed, and some numerical examples are reported to confirm the theoretical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.