Abstract

When the matrix in question is unsymmetric, the approximate eigenvectors or Ritz vectors obtained by orthogonal projection methods including Arnoldi's method and the block Arnoldi method cannot be guaranteed to converge in theory even if the corresponding approximate eigenvalues or Ritz values do. In order to circumvent this danger, a new strategy has been proposed by the author for Arnoldi's method. The strategy used is generalized to the block Arnoldi method in this paper. It discards Ritz vectors and instead computes refined approximate eigenvectors by small-sized singular-value decompositions. It is proved that the new strategy can guarantee the convergence of refined approximate eigenvectors if the corresponding Ritz values do. The resulting refined iterative algorithm is realized by the block Arnoldi process. Numerical experiments show that the refined algorithm is much more efficient than the iterative block Arnoldi algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.