Abstract
Polymer residue from Polymethyl methacrylate (PMMA) on transferred graphene is a common issue for graphene devices. This residue affects the properties of graphene. Herein, we have introduced an improved technique to reduce the effect of this residue by deep UV (DUV) exposure of PMMA coated graphene samples within the wet transfer process. This technique has systematically been evaluated by optical microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and electrical measurements. The results show that this residue is effectively reduced on the graphene surface after DUV treatment. In addition, the electrical characteristics of transferred graphene confirm that the sheet resistance and contact resistance are reduced by about 60 and 80%, respectively, after the DUV exposure. Electrical current transport characteristics also show that minimizing this residue on the graphene surface gives less hysteresis of electronic transport in back-gate graphene field-effect transistors. Furthermore, repeating electrical tests and aging shift the neutral point voltage of graphene. We attribute these improvements to cleaving of the chemical bonds in PMMA by DUV exposure and hence increasing the solubility of PMMA in acetone for subsequent processing steps. This work provides a unique route to enhance the electrical properties of transferred graphene after the fabrication process.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have