Abstract
Great interest and rapid research efforts on acrylamide in foods followed an announcement in April 2002 by the Swedish National Food Authority and the University of Stockholm. Reduction of acrylamide in high-temperature processing foods, including selection of the raw material and variation of processing parameters, etc. were extensive reported. In this research, effect of some agents on acrylamide formation was investigated. A glucose-asparagines reaction model system was used to test the effect of ferulic acid, catechin, CaCl2, NaHSO3, and l-cysteine on inhibition of acrylamide formation and three efficient inhibitors, NaHSO3, CaCl2 and l-cysteine were screened. The results showed that immersing of the fresh potato chips using different concentration of the agents greatly inhibited acrylamide formation in fried potato crisps, and the efficiency increased as their concentrations increased; among them, l-cysteine is the most efficient agent but CaCl2 is most potential. Effects of these food additives on the texture of fried potato crisps were also studied. It was found that l-cysteine showed little effect on the texture of the crisps and CaCl2 is regarded as the suitable choice because of its low price and the acceptable mouth feel of fried crisps treated by CaCl2, although it increased the brittleness. Moreover, the application of CaCl2 in industrial production of fried potato crisps was also studied. In the blanching process (deactivation process of enzymes at 85 °C), a computerized electrical conductivity detector was used to keep the concentration of CaCl2 at constant and the result showed that immersion of potato slices in CaCl2 solution at 5 g/L reduced acrylamide formation by more than 85% in fried crisps. This research presents a technology to inhibit acrylamide formation in fried potato chips by immersion of fresh potato chips with some food additives. The approach suggested that cysteine and calcium chloride significantly decreased the content of acrylamide in fried potato chips and their concentrations could be kept constant by using a conductor as a detector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Innovative Food Science & Emerging Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.