Abstract

A balance between production and elimination of reactive oxygen species such as superoxide anion (O 2 − ) and hydrogen peroxide (H 2O 2) tightly regulates the homeostasis of cellular oxidative stress, which contributes to a variety of cardiovascular diseases, including hypertension. The present study assessed the hypothesis that O 2 − or H 2O 2 levels augmented by the reduced molecular synthesis or enzyme activity of superoxide dismutase (SOD), catalase (CAT), or glutathione peroxidase (GPx) in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons that generate tonic vasomotor tone are located, contribute to the pathogenesis of hypertension. We found that copper/zinc SOD (SOD1), manganese SOD (SOD2), or CAT, but not GPx, mRNA or protein expression and enzyme activity in the RVLM of spontaneously hypertensive rats (SHR) were significantly lower than those in normotensive Wistar–Kyoto (WKY) rats, along with a significantly higher level of O 2 − or H 2O 2. A causative relationship between these biochemical correlates of oxidative stress and neurogenic hypertension was established when gene transfer by microinjection of adenovirus encoding SOD1, SOD2, or CAT into the bilateral RVLM promoted a long-lasting reduction in arterial pressure in SHR, but not WKY rats, accompanied by an enhanced SOD1, SOD2, or CAT protein expression or enzyme activity and reduced O 2 − or H 2O 2 level in the RVLM. These results together suggest that downregulation of gene expression and enzyme activity of the antioxidant SOD1, SOD2, or CAT may underlie the augmented levels of O 2 − and H 2O 2 in the RVLM, leading to oxidative stress and hypertension in SHR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.