Abstract

Following the need to improve packaging and contact layers for photovoltaics and other optoelectronic applications, a renewed interest in the fabrication of thin, low-density silicon films has arisen. We demonstrate a reactive sputtering technique utilizing a secondary plasma to crack hydrogen gas during physical vapor deposition of silicon layers. Cracking efficiency of the gas varies heavily with pressure and power from under 10% to nearly 100% conversion to hydrogen radicals. Radicals incorporated into the film produce amorphous silicon films with densities as low as 1.73 g / cm3, compared to 2.2 g / cm3 in their nonhydrogenated counterparts. Reduced density films likewise have a reduction in index of refraction comparable to other hydrogenated amorphous silicon produced by other techniques with indices close to 2 across the visible portion of the spectrum. Our work represents a useful, scalable advance in the production of amorphous hydrogenated silicon for a variety of applications requiring large areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.