Abstract
Homogeneous electrocatalysis has been well studied over the past several decades for the conversion of small molecules to useful products for green energy applications or as chemical feedstocks. However, in order for these catalyst systems to be used in industrial applications, their activity and stability must be improved. In naturally occurring enzymes, redox equivalents (electrons, often in a concerted manner with protons) are delivered to enzyme active sites by small molecules known as redox mediators (RMs). Inspired by this, co-electrocatalytic systems with homogeneous catalysts and RMs have been developed for the conversion of alcohols, nitrogen, unsaturated organic substrates, oxygen, and carbon dioxide. In these systems, the RMs have been shown to both increase the activity of the catalyst and shift selectivity to more desired products by altering catalytic cycles and/or avoiding high-energy intermediates. However, the area is currently underdeveloped and requires additional fundamental advancements in order to become a more general strategy. Here, we summarize the recent examples of homogeneous co-electrocatalysis and discuss possible future directions for the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.