Abstract

Transition metal-based homogeneous photocatalysts offer a wealth of opportunities for organic synthesis. The most versatile ruthenium(II) and iridium(III) polypyridyl complexes, however, are among the rarest metal complexes. Moreover, immobilizing these precious catalysts for recycling is challenging as their opacity may obstruct light transmission. Recovery of homogeneous catalysts by conventional polymeric membranes is promising but limited, as the modulation of their pore structure and tolerance of polar organic solvents are challenging. Here, we report the effective recovery of homogeneous photocatalysts using covalent organic framework (COF) membranes. An array of COF membranes with tunable pore sizes and superior organic solvent resistance were prepared. Ruthenium and iridium photoredox catalysts were recycled for 10 cycles in various types of photochemical reactions, constantly achieving high catalytical performance, high recovery rates, and high permeance. We successfully recovered the photocatalysts at gram-scale. Furthermore, we demonstrated a cascade isolation of an iridium photocatalyst and purification of a small organic molecule product with COF membranes possessing different pore sizes. Our results indicate an intriguing potential to shift the paradigm of the pharmaceutical and fine chemical synthesis campaign.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.