Abstract

Even though experiments on brain slices have been in use since 1951, problems remain that reduce the probability of achieving a stable and successful analysis of synaptic transmission modulation when performing field potential or intracellular recordings. This manuscript describes methodological aspects that might be helpful in improving experimental conditions for the maintenance of acute brain slices and for recording field excitatory postsynaptic potentials in a commercially available submersion chamber with an outflow-carbogenation unit. The outflow-carbogenation helps to stabilize the oxygen level in experiments that rely on the recycling of a small buffer reservoir to enhance the cost-efficiency of drug experiments. In addition, the manuscript presents representative experiments that examine the effects of different carbogenation modes and stimulation paradigms on the activity-dependent synaptic plasticity of synaptic transmission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call