Abstract
Activity-dependent remodeling of dendritic spines is essential for neural circuit development and synaptic plasticity, but the mechanisms that coordinate synaptic structural and functional plasticity are not well understood. Here we investigate the signaling pathways that enable excitatory synapses to undergo activity-dependent structural modifications. We report that activation of NMDA receptors in cultured cortical neurons induces spine morphogenesis and activation of the small GTPase Rap1. Rap1 bimodally regulates spine morphology: activated Rap1 recruits the PDZ domain-containing protein AF-6 to the plasma membrane and induces spine neck elongation, while inactive Rap1 dissociates AF-6 from the membrane and induces spine enlargement. Rap1 also regulates spine content of AMPA receptors: thin spines induced by Rap1 activation have reduced GluR1-containing AMPA receptor content, while large spines induced by Rap1 inactivation are rich in AMPA receptors. These results identify a signaling pathway that regulates activity-dependent synaptic structural plasticity and coordinates it with functional plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.