Abstract

The squamous epithelium of the esophagus is directly exposed to the environment, continuously facing foreign antigens, including food antigens and microbes. Maintaining the integrity of the epithelial barrier is critical for preventing infections and avoiding inflammation caused by harmless food-derived antigens. This article provides simplified protocols for generating human esophageal organoids and air-liquid interface cultures from patient biopsies to study the epithelial compartment of the esophagus in the context of tissue homeostasis and disease. These protocols have been significant scientific milestones in the last decade, describing three-dimensional organ-like structures from patient-derived primary cells, organoids, and air-liquid interface cultures. They offer the possibility to investigate the function of specific cytokines, growth factors, and signaling pathways in the esophageal epithelium within a three-dimensional framework while maintaining the phenotypic and genetic properties of the donor. Organoids provide information on tissue microarchitecture by assessing the transcriptome and proteome after cytokine stimulation. In contrast, air-liquid interface cultures allow the assessment of the epithelial barrier integrity through transepithelial resistance (TEER) or macromolecule flux measurements. Combining these organoids and air-liquid interface cultures is a powerful tool to advance research in impaired esophageal epithelial barrier conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.