Abstract

Let P be a set of n≥5 points in convex position in the plane. The path graph G(P) of P is an abstract graph whose vertices are non-crossing spanning paths of P, such that two paths are adjacent if one can be obtained from the other by deleting an edge and adding another edge.We prove that the automorphism group of G(P) is isomorphic to Dn, the dihedral group of order 2n. The heart of the proof is an algorithm that first identifies the vertices of G(P) that correspond to boundary paths of P, where the identification is unique up to an automorphism of K(P) as a geometric graph, and then identifies (uniquely) all edges of each path represented by a vertex of G(P). The complexity of the algorithm is O(Nlog⁡N) where N is the number of vertices of G(P).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.