Abstract
Accurate measurement of exposure to SARS-CoV-2 in the population is crucial for understanding the dynamics of disease transmission and evaluating the impacts of interventions. However, it was particularly challenging to achieve this in the early phase of a pandemic because of the sparsity of epidemiological data. We previously developed an early pandemic diagnostic tool that linked minimum datasets: seroprevalence, mortality and infection testing data to estimate the true exposure in different regions of England and found levels of SARS-CoV-2 population exposure to be considerably higher than suggested by seroprevalence surveys. Here, we re-examine and evaluate the model in the context of reconstructing the first COVID-19 epidemic wave in England from three perspectives: validation against the Office for National Statistics (ONS) Coronavirus Infection Survey, relationship among model performance and data abundance and time-varying case detection ratios. We find that our model can recover the first, unobserved, epidemic wave of COVID-19 in England from March 2020 to June 2020 if two or three serological measurements are given as additional model inputs, while the second wave during winter of 2020 is validated by estimates from the ONS Coronavirus Infection Survey. Moreover, the model estimates that by the end of October in 2020 the UK government's official COVID-9 online dashboard reported COVID-19 cases only accounted for 9.1 % of cumulative exposure, dramatically varying across the two epidemic waves in England in 2020, 4.3 % vs 43.7 %.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have