Abstract
Hundreds of public water systems across the United States have been contaminated by the use of aqueous film-forming foams (AFFF) containing per- and polyfluoroalkyl substances (PFAS) during firefighting and training activities. Prior work shows AFFF contain hundreds of polyfluoroalkyl precursors missed by standard methods. However, the most abundant precursors in AFFF remain uncertain, and mixture contents are confidential business information, hindering proactive management of PFAS exposure risks. Here, we develop and apply a novel method (Bayesian inference) for reconstructing the fluorinated chain lengths, manufacturing origin, and concentrations of oxidizable precursors obtained from the total oxidizable precursor (TOP) assay that is generally applicable to all aqueous samples. Results show virtually all (median 104 ± 19%) extractable organofluorine (EOF) in contemporary and legacy AFFF consists of targeted compounds and oxidizable precursors, 90% of which are 6:2 fluorotelomers in contemporary products. Using high-resolution mass spectrometry, we further resolved the 6:2 fluorotelomers to assign the identity of 14 major compounds, yielding a priority list that accounts for almost all detectable PFAS in contemporary AFFF. This combination of methods can accurately assign the total PFAS mass attributable to AFFF in any aqueous sample with differentiation of gross precursor classes and identification of major precursor species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.