Abstract

Organic alkoxy (RO) and peroxy (RO2) radicals are key intermediates in multiphase atmospheric oxidation chemistry, though most of the study of their chemistry has focused on the gas phase. To better understand how radical chemistry may vary across different phases, we examine the chemistry of a model system, the 1-pentoxy radical, in three phases: the aqueous phase, the condensed organic phase, and the gas phase. In each phase, we generate the 1-pentoxy radical from the photolysis of n-pentyl nitrite, run the chemistry under conditions in which RO2 radicals react with NO, and detect the products in real time using an ammonium chemical ionization mass spectrometer (NH4 + CIMS). The condensed-phase chemistry shows an increase in formation of organic nitrate (RONO2) from the downstream RO2+NO reaction, which is attributed to potential collisional and solvent-cage stabilization of the RO2-NO complex. We further observe an enhancement in the yield of carbonyl relative to hydroxy carbonyl products in the condensed phase, indicating changes to RO radical kinetics. The different branching ratios in the condensed phase impact the product volatility distribution as well as HO x -NO x chemistry, and may have implications for nitrate formation, aqueous aerosol formation, and radical cycling within atmospheric particles and droplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.