Abstract
Successful reduction of oil and gas sector methane emissions to meet near-zero intensity targets requires the identification and mitigation of all possible sources. One potentially important source is catalytic heaters, which have largely escaped attention in regulatory and mitigation efforts despite being ubiquitous at upstream production sites in cold climate regions. This study reports direct in situ measurements of the exhaust streams of 38 natural gas-fired catalytic heaters at upstream production sites in British Columbia, Canada. All heaters in the sample showed consistently poor methane conversion with mean destruction efficiencies of 61 ± 5% while releasing 235 [+31/-28] g of methane per cubic meter of fuel. Although individual units are generally small methane sources (mean of 0.28 ± 0.04 kg/h), their prevalence means they could represent 6% of the total provincial upstream methane inventory and as an aggregate methane source could be 5× more significant than abandoned wells. Notably, these heaters are seasonal sources whose emissions would be missed in measurement campaigns occurring solely in summer months. However, additional measurements from a small number of heat medium burners demonstrate that, where feasible, methane emissions can be reduced by approximately 425× by replacing catalytic heaters with centralized heat systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.