Abstract
Atmospheric profiles are essential in weather prediction, atmospheric research, and satellite data calibration. In this study, we assess the use of the Weather Research and Forecasting (WRF) model to downscaling NCEP Climate Forecast System Version 2 (CFSv2) reanalysis atmospheric profiles. Moreover, a sensitivity analysis was conducted to Yonsei University (YSU) and Mellor–Yamada–Janjic (MYJ) Planetary Boundary Layer (PBL) parameterization schemes. WRF simulations were carried out using two nested grids with horizontal resolutions of 12 and 3 km. Simulated profiles were evaluated against radiosonde observations in Southern Brazil. Results indicate that WRF can skillfully simulate vertical profiles of water vapor mixing ratio ( q ) and potential temperature ( θ ). The entire profile comparison yielded high correlation coefficients (mostly higher than 0.9), low moist and cold average biases, and overall RMSE (MAE) of 0.84 (0.44) g/Kg and 2.30 (1.61) K for q and θ , respectively. In the lower troposphere (0-3 km), errors are larger for q and lower for θ . Statistically, there is no significant difference in the retrieved profiles on increasing the horizontal resolution. The setting choice is a compromise between spatial detail needs and computational cost. Furthermore, the overall results did not indicate any preferred PBL scheme that outperforms in all case days. The performance depends on the meteorological conditions that prevail in the different cases. The WRF model and even data directly from NCEP CFSv2 reanalysis are useful to represent the vertical structure of the atmosphere when local radiosondes are not available.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have