Abstract
The real-time train scheduling problem for urban rail transit systems is considered with the aim of minimizing the total travel time of passengers and the energy consumption of trains. Based on the passenger demand in urban rail transit systems, the optimal departure times, running times, and dwell times are obtained by solving the scheduling problem. Three solution approaches are proposed to solve the real-time scheduling problem for trains: a pattern search method, a mixed integer nonlinear programming (MINLP) approach, and a mixed integer linear programming (MILP) approach. The performance of these three approaches is compared via a case study based on the data of the Beijing Yizhuang line. The results show that the pattern search method provides a good trade-off between the control performance and the computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.