Abstract

The real-time train scheduling problem for urban rail transit systems is considered with the aim of minimizing the total travel time of passengers and the energy consumption of the operation of trains. Based on the passenger demand in the urban rail transit system, the optimal departure times, running times, and dwell times are obtained by solving the scheduling problem. A new iterative convex programming (ICP) approach is proposed to solve the train scheduling problem. The performance of the ICP approach is compared with other alternative approaches, i.e., nonlinear programming approaches, a mixed-integer nonlinear programming (MINLP) approach, and a mixed-integer linear programming (MILP) approach. In addition, this paper formulates the real-time train scheduling problem with stop-skipping and shows how to solve it using an MINLP approach and an MILP approach. The ICP approach is shown, via a case study, to provide a better tradeoff between performance and computational complexity for the real-time train scheduling problem. Furthermore, for the train scheduling problem with stop-skipping, the MINLP approach turns out to have a good tradeoff between the control performance and the computational efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.