Abstract
ABSTRACT Electricity generation continue to increase to meet the ever-growing demand of the built environment. Building’s miscellaneous plug loads are targeted for energy savings potentials. However, to achieve these savings, monitoring their energy consumption and providing comprehensive real-time energy usage information to the end-user is paramount. Real-time energy monitoring devices are significant tools for this purpose. However, deploying these devices for each load and for entire building, is cost-prohibitive. An alternative approach is to deploy tools to remotely identify the location of active-loads in real-time. This research proposes the development of the Energy Node Locating Method (ENLM) platform that remotely locates and measures power consuming loads at every electrical node, in the building, in real-time based on Sequence Time Domain Reflectometry (STDR). The proposed ENLM utilizes the measured time-delay between an injected and reflected signal at a branch circuit from any connected load to calculate the length of the physical wire to identify the location of energy usage. This information with real-time power consumption data are correlated with occupant’s entry data to identify where and how much energy is used. Various tests are conducted to validate the proposed platform, and the results confirm the validity of the platform.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.