Abstract

Objective: The application of genetic algorithm in the design of the Internet of Things platform of heat energy collection system is launched, and the value of the application of the Internet of Things control platform of genetic algorithm in the heat energy collection system is analyzed to verify its effectiveness and superiority. Method: Firstly, the design of the basic framework of the Internet of Things is developed, mainly on the acquisition and processing module and the communication module of the framework. Then, genetic algorithm is used to make statistics of the system nodes in the heat energy collection system, and establish the optimization function of heat energy conversion rate based on genetic algorithm. Then, the optimization function is used to design the control circuit to improve the flexibility of the control circuit. Finally, the system developed in this study is verified by experiments. Results: After the application of three platforms to control the heat energy collection system, the heat energy conversion rate is higher than that of the previous platform, and the platform controlled thermal energy conversion rate is the highest. Moreover, the real-time energy consumption is the smallest. Conclusion: It is found that the application of genetic algorithm in the Internet of Things platform of the heat energy collection system can effectively optimize the heat energy conversion rate, and the real-time work energy consumption is also very low, which improves the heat energy standardization rate, has certain application value, and can better improve the energy source rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call