Abstract

In this study, an innovation was made by adding helical fins on the vortex finder of a cylindrical gas-solid cyclone separator, and the effect of this structural improvement on the separation performance was analyzed based on the flow field characteristics. The results show that both cyclones with and without helical fins exhibit a separation efficiency of almost 100% for particles larger than 5 ?m. As the inlet velocity increases, the effect of adding helical fins on the overall separation efficiency decreases, with a relative deviation of only 0.16% at an inlet velocity of 27 m/s, while it becomes increasingly effective in reducing energy consumption, with a pressure drop of 25.33%. The mechanism of the overall performance improvement lies in the fact that the helical fins change the flow field distribution in the cyclone, where the turbulence intensity in the vortex finder is significantly reduced, the tangential velocity of the external vortex is decreased, and the pressure gradient is reduced. The purpose of this paper is to provide new ideas for the optimal design of the internal components of the cyclone separator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.