Abstract
Nowadays, many surgeries, including eye surgeries, are video-monitored. We present in this paper an automatic video analysis system able to recognize surgical tasks in real-time. The proposed system relies on the Content-Based Video Retrieval (CBVR) paradigm. It characterizes short subsequences in the video stream and searches for video subsequences with similar structures in a video archive. Fixed-length feature vectors are built for each subsequence: the feature vectors are unchanged by variations in duration and temporal structure among the target surgical tasks. Therefore, it is possible to perform fast nearest neighbor searches in the video archive. The retrieved video subsequences are used to recognize the current surgical task by analogy reasoning. The system can be trained to recognize any surgical task using weak annotations only. It was applied to a dataset of 23 epiretinal membrane surgeries and a dataset of 100 cataract surgeries. Three surgical tasks were annotated in the first dataset. Nine surgical tasks were annotated in the second dataset. To assess its generality, the system was also applied to a dataset of 1,707 movie clips in which 12 human actions were annotated. High task recognition scores were measured in all three datasets. Real-time task recognition will be used in future works to communicate with surgeons (trainees in particular) or with surgical devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.