Abstract
With advances in computer technology and the World Wide Web there has been an explosion in the amount and complexity of multimedia data that are generated, stored, transmitted, analyzed, and accessed. In order to extract useful information from this huge amount of data, many content-based image retrieval (CBIR) systems have been developed in the last decade. A Typical CBIR system captures image features that represent image properties such as color, texture, or shape of objects in the query image and try to retrieve images from the database with similar features. Recent advances in CBIR systems include relevance feedback based interactive systems. The main advantage of CBIR systems with relevance feedback is that these systems take into account the gap between the high-level concepts and low-level features and subjectivity of human perception of visual content. CBIR systems with relevance feedback are more efficient than conventional CBIR systems; however, these systems depend on human interaction. In this chapter, we describe a new approach for image storage and retrieval called association-based image retrieval (ABIR). The authors try to mimic human memory. The human brain stores and retrieves images by association. They use a generalized bi-directional associative memory (GBAM) to store associations between feature vectors that represent images stored in the database. Section I introduces the reader to the CBIR system. In Section II, they present architecture for the ABIR system, Section III deals with preprocessing and feature extraction techniques, and Section IV presents various models of GBAM. In Section V, they present case studies.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have