Abstract

Side-coupled photonic crystal (PhC) nanobeam cavities were investigated to overcome challenges in measuring low-order resonances in traditional in-line PhC nanobeams that arise due to the trade-off between achieving high quality (Q)-factor and high transmission intensity resonances. On the same PhC nanobeam, we demonstrate that the side-coupling approach leads to measurable resonances even in cases in which high mirror strength unit cells severely limit the intensity of transmitted light through the in-line configuration. In addition, by coupling light directly into the cavity center, the design of side-coupled PhC nanobeams can be simplified such that high Q-factor PhC nanobeams can be achieved using only two different hole radii and uniform hole spacing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.