Abstract
Investigating lipid droplets (LDs) behaviours is essential to deeply understand the physiology of LDs, such as their growths, movements, fusion/division, and autophagy. Among these behaviours, the growth of LDs is one of the most difficult to track due to the very subtle morphology evolution in a short time window. The major obstacle is that conventional LDs-specific dyes with low photostability cannot indicate the LDs’ size change. To address this issue, we synthesize a hydrophobic and photostable fluorescent dye (TPA-AD) and load it into the neutral lipid micelles (as artificial adiposomes). The highly hydrophobic TPA-AD enables the specific accumulation into intracellular LDs and the ready loading artificial adiposomes. When the intracellular LDs take TPA-AD-labeled adiposomes, by fusion, the sizes of LDs gradually grow, and LDs are simultaneously lighted up by the fluorescence of TPA-AD. Importantly, the high photostability of TPA-AD ensures the enhanced fluorescence signals. The finding here will further strengthen the understanding of LDs dynamics and fat metabolism.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have