Abstract

A real-time nanomanipulation technique inside a scanning electron microscope (SEM) has been used to investigate the elastic and frictional (tribological) properties of zinc oxide nanowires (NWs). A NW was translated over a surface of an oxidised silicon wafer using a nanomanipulator with a glued atomic-force microscopic tip. The shape of the NW elastically deformed during the translation was used to determine the distributed kinetic friction force. The same NW was then positioned half-suspended on edges of trenches cut by a focused ion beam through a silicon wafer. In order to measure Young’s modulus, the NW was bent by pushing it at the free end with the tip, and the interaction force corresponding to the visually observed bending angle was measured with a quartz tuning fork force sensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.