Abstract
Acquiring insight into the transport of water clusters across cytomembrane is vital and essential for elucidating cell functions and water channels. Herein, A highly sensitive living cell analysis platform was developed for monitoring the transport dynamics of water clusters through water channels by combining the piezoelectric transducer and the hypotonicity-caused cell volume regulation. The various drinking water was used as the hypotonic perfusate to stimulate vascular endothelial cells and the temporal frequency response to cells was obtained to analyze the transport rate of the influx and efflux of water clusters which is related to water structure. The sensor is capable to distinguish the transport dynamics of different water clusters in five drinking water which the transport rates of water influx of cells are 5.1 ± 0.40, 6.6 ± 0.96, 7.4 ± 0.46, 8.1 ± 0.86, and 8.4 ± 0.80 Hz min−1 (n = 3), respectively, showed that they are ranked in the increasing order: M-water, C-water, S-water, RO-water, d-water. Moreover, inhibitor of HgCl2 was used to block water channels to reveal the water transport via water channels. Conductivity and infrared spectroscopy assays further confirmed the differences of transport dynamics between these drinking water due to the structure or size of water clusters caused by the mineral substance or the electromagnetic field. Therefore, this work provides a novel, simple and effective method for monitoring the transport of different water cluster across cytomembrane.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have