Abstract

Different sizes of water clusters from a dimer to twenty water molecules are studied using density functional theory. The binding energies of water clusters are calculated, and a relationship in terms of a simple function has been found between binding energy and the size of the water clusters. The interpolation of this correlation function reproduces the binding energies for the other water clusters to an accuracy within 1 kcal/mol. The extrapolation of the function gives the binding energy, −11.38 kcal/mol, which agrees very well with the experimental binding energy of ice, −11.35 kcal/mol. We also find small water clusters composed of mainly planar four membered rings to be more stable, implying the existence of magic numbers for water clusters with sizes of 4, 8, and 12.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call